On the Unique Satisfiability Problem

نویسندگان

  • Andreas Blass
  • Yuri Gurevich
چکیده

UNIQUE SAT is the problem of deciding whether a given Boolean formula has exactly one satisfying truth assignment. This problem is a typical (moreover complete) representative of a natural class of problems about unique solutions. All these problems belong to the class DIFe= {L1--L2:L1,Lz~NP} studied by Papadimitriou and Yannakakis. We consider the relationship between these two classes, particularly whether UNIQUE SAT is DIFe-complete: It is if NP = c o NP. We construct an oracle relative to which UNIQUE SAT is not complete for DIF ~, and another oracle relative to which UNIQUE SAT is complete for DIF e, whereas NP v ~ co NP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satisfiability Parsimoniously Reduces to the TantrixTM Rotation Puzzle Problem

Holzer and Holzer [HH04] proved that the Tantrix rotation puzzle problem is NP-complete. They also showed that for infinite rotation puzzles, this problem becomes undecidable. We study the counting version and the unique version of this problem. We prove that the satisfiability problem parsimoniously reduces to the Tantrix rotation puzzle problem. In particular, this reduction preserves the uni...

متن کامل

The Complexity of Some Subclasses of Minimal Unsatis able Formulas

This paper is concerned with the complexity of some natural subclasses of minimal unsatisfiable formulas. We show the D –completeness of the classes of maximal and marginal minimal unsatisfiable formulas. Then we consider the class Unique–MU of minimal unsatisfiable formulas which have after removing a clause exactly one satisfying truth assignment. We show that Unique–MU has the same complexit...

متن کامل

Unique k-SAT is as Hard as k-SAT

In this work we show that Unique k-SAT is as hard as k-SAT for every k ∈ N. This settles a conjecture by Calabro, Impagliazzo, Kabanets and Paturi [4]. To provide an affirmative answer to this conjecture, we develop a randomness optimal construction of Isolation Lemma for k-SAT.

متن کامل

The Complexity of Planar Counting Problems

We prove the #P-hardness of the counting problems associated with various satisfiability, graph, and combinatorial problems, when restricted to planar instances. These problems include 3Sat, 1-3Sat, 1-Ex3Sat, Minimum Vertex Cover, Minimum Dominating Set, Minimum Feedback Vertex Set, X3C, Partition Into Triangles, and Clique Cover. We also prove the NP-completeness of the Ambiguous Satisfiabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information and Control

دوره 55  شماره 

صفحات  -

تاریخ انتشار 1982